About car - for a motor fan

e process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks. Electric motors can be run as generators and vice versa, although

About car - for a motor fan reduce smoke Ds

About electric motor

An electric motor uses electrical energy to produce mechanical energy, usually through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks. Electric motors can be run as generators and vice versa, although this is not always practical. Electric motors are ubiquitous, being found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the thousands of kilowatts. Electric motors may be classified by the source of electric power, by their internal construction, and by their application.

Źródło: https://en.wikipedia.org/wiki/Engine#Electric_motor


A gas turbine compresses air

Gas turbines
Main article: gas turbine
Turbine Power Plant

A gas turbine compresses air and uses it to turn a turbine. It is essentially a Jet engine which directs it's output to a shaft. There are three stages to a turbine: 1) air is drawn through a compressor where the temperature rises due to compression, 2) fuel is added in the combuster, and 3) hot air is exhausted through turbines blades which rotate a shaft connected to the compressor.

A gas turbine is a rotary machine similar in principle to a steam turbine and it consists of three main components: a compressor, a combustion chamber, and a turbine. The air, after being compressed in the compressor, is heated by burning fuel in it. About ? of the heated air, combined with the products of combustion, expands in a turbine, producing work output that drives the compressor. The rest (about ?) is available as useful work output. 26

Gas Turbines are among the MOST efficient internal combustion engines. The General Electric 7HA and 9HA turbine electrical plants are rated at over 61% efficiency. 27

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Most truck and automotive diesel engines

Diesel cycle
Main article: Diesel cycle
P-v Diagram for the Ideal Diesel cycle. The cycle follows the numbers 1?4 in clockwise direction.

Most truck and automotive diesel engines use a cycle reminiscent of a four-stroke cycle, but with a compression heating ignition system, rather than needing a separate ignition system. This variation is called the diesel cycle. In the diesel cycle, diesel fuel is injected directly into the cylinder so that combustion occurs at constant pressure, as the piston moves.

Otto cycle: Otto cycle is the typical cycle for most of the cars internal combustion engines, that work using gasoline as a fuel. Otto cycle is exactly the same one that was described for the four-stroke engine. It consists of the same four major steps: Intake, compression, ignition and exhaust.

PV diagram for Otto cycle On the PV-diagram, 1?2: Intake: suction stroke 2?3: Isentropic Compression stroke 3?4: Heat addition stroke 4?5: Exhaust stroke (Isentropic expansion) 5?2: Heat rejection The distance between points 1?2 is the stroke of the engine. By dividing V2/V1, we get: r, where r is called the compression ratio of the engine.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine



© 2019 http://www.remontdomu.bydgoszcz.pl/